These materials were meant to revolutionize the solar industry. Why hasn’t it happened?

1 month ago 33

Solar panels are basically synonymous with silicon. The material is used in about 95% of the panels in today’s market. But silicon solar cells are limited in how much energy they can harness from the sun, and they are still relatively expensive to make. 

For many, compounds called perovskites have long held promise as potentially cheaper, lighter, more efficient solar materials. But despite the excitement—and a flurry of startups to commercialize the technology—some experts caution that perovskite-based solar cells could still be nearly a decade away from having a significant commercial impact, if it ever happens.

Though recent studies on perovskite cells have shown progress in key metrics like efficiency, the reality is that the materials may still be far from being able to withstand real-world conditions. 

“I think the [perovskite] community as a whole is projecting a misleading impression that things are about to go commercial,” says Martin Green, a solar materials researcher at the University of New South Wales in Australia. 

Perovskites are a family of synthetic materials that efficiently absorb sunlight and are relatively easily used to coat surfaces, creating cheap solar cells that can harness energy from the sun and transform it into electricity.

While silicon has a head start in the key metrics that researchers use to evaluate solar materials, perovskites are quickly catching up. That’s especially true for efficiency—how much energy from the sun a cell converts to electricity. Both silicon and perovskites have recently set records above 25%. 

The quick progress in work on perovskites has led to a large influx of researchers hoping to exploit the materials. Scientific papers have heralded new achievements, and the funding has followed. The US Department of Energy, for example, offers a startup prize for perovskite businesses.

Several startup companies, like Microquanta Semiconductor,

Read Entire Article